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Abstract. We present a novel approach for segmenting different motions from
3D trajectories. Our approach uses the theory of transformation groups to derive
a set of invariants of 3D points located on the same rigid object. These invari-
ants are inexpensive to calculate, involving primarily QR factorizations of small
matrices. The invariants are easily converted into a set of robust motion affinities
and with the use of a local sampling scheme and spectral clustering, they can be
incorporated into a highly efficient motion segmentation algorithm. We have also
captured a new multi-object 3D motion dataset, on which we have evaluated our
approach, and compared against state-of-the-art competing methods from liter-
ature. Our results show that our approach outperforms all methods while being
robust to perspective distortions and degenerate configurations.

1 Introduction

Motion is a powerful low-level cue, which when correctly disambiguated can signif-
icantly aid many computer vision problems, such as object segmentation, video post-
processing, visual surveillance, robotic and autonomous vehicle navigation and activity
recognition. Thus in the last few years a number of approaches have tried to solve the
sparse motion segmentation problem. Namely, grouping point trajectories where each
group is associated with a distinct 3D motion. 3D Motion segmentation can be per-
formed directly in 2D. Assume the measured 2D coordinates of a point as:

x̃ =
sX

Z
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sY

Z
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where x=[X,Y, Z, 1]T are its 3D homogeneous coordinates relative to the camera co-
ordinate system, Z is the depth, s, o1, o2 the intrinsic camera parameters and [ε1, ε2]
the tracking noise. We can rewrite (1) for point p = 1...P and frame f = 1...F as:
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with ck=[rk1 rk2 rk3 tk] being the elements of the rigid transformation of the 3D points
xp, now expressed relative to the world coordinate system. The vectors wf

p are aggre-
gated into a 2F×P data matrix W=[wf

p ] for all points and all image frames.
The traditional approach to 3D motion segmentation from 2D uses an affine camera

model assumption, in which Zfp is constant and as a consequence, W factorizes into
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Fig. 1. Overview of our method. Given a set of rigid points (e.g. 4) in 2 frames, we can find a
canonical representation, which allows us to compare the points between frames. For rigid mo-
tions (left example), the canonical representations will be near-identical. For non-rigid motions
(right example), the canonical representations will differ considerably.

a motion component and a 3D shape component [1]. This result implies that each tra-
jectory lies in a 4D subspace and as such motion segmentation may be solved as the
equivalent task of subspace clustering [2]. Notable solutions are the SSC method [3],
which describes each point by a sparse set of points from the same subspace; the LRR
method [4], which tries to recover a low-rank representation of the data points; LSR
by [5], which exploits the data sample correlation and groups points that have high cor-
relation together; the SC approach [6], which looks at the cosine angle between pairs
of points as the clustering criterion; or the more recent DiSC method [7], which uses an
ensemble of quadratic classifiers each trained from unlabelled data. The main advan-
tage of working with 2D data is that 2D point trajectories may be easily obtained from
a single camera. However, using only 2D trajectories to segment 3D motions can be
problematic due to ambiguities and potential degeneracies in the motions from the lack
of associated depth information. Also, because of the affine camera model employed,
2D methods are prone to failure when they are faced with strong perspective distortions.

With the arrival of new and inexpensive RGB-D sensors (structured light and ToF
cameras) it is possible to obtain depth, and thus 3D trajectories, from a single device.
Three-dimensional data is not so much affected by degeneracies or perspective dis-
tortions, and as a result motion segmentation should be more accurate if carried out
directly in 3D. If depth is available it may be incorporated into the final solution in dif-
ferent ways. The first way is the depth scaling approach: Given a depth measurement
Z̃=Z+δ for every point in the scene, where δ is the depth noise, we may instead use
the fully projective camera model. Multiplying the depth onto the image coordinates in
(1), in homogeneous form, gives us:

wf
p=

Z̃
f
p · x̃fp
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As with (2), the depth scaled version (3) allows us to construct a 3F×P data matrix
WP that has columns which lie in a 4D subspace. This means that both (2) and (3),
can be solved in an identical manner via subspace clustering. Note that where W and
WP differ is in the way that they are affected by noise. W is only perturbed by the
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tracking noise [ε1, ε2], whereas WP is perturbed by the multiplicative effects of both
the tracking noise and the depth noise δ. As a result, if there is considerable noise in the
depth measurements, then using WP may produce inferior segmentation results.

The second way is by extracting 3D trajectories and using motion segmentation
methods that can work with three-dimensional data. Recent techniques for extracting
very accurate 3D trajectories from depth sensors include the work by by [8] that uses a
particle filter and that by [9] that tracks surface patches inside a Lucas-Kanade frame-
work. The simplest and fastest, albeit less precise, way of extracting the 3D trajectories
is directly from the combination of 2D and depth measurements. Similarly to (3), given
a tracked point from (1) and its depth measurement Z̃, the 3D position of the point can
be estimated as

X̃ = Z̃(x̃−o1)
s = X + δX

Z + ε1Z
s + ε1δ

s ,

Ỹ = Z̃(ỹ−o2)
s = Y + δY

Z + ε2Z
s + ε2δ

s .
(4)

The estimates [X̃, Ỹ , Z̃] are calculated in the camera coordinate system instead of the
world coordinate system, which would require estimation of the camera pose. However,
since we are only interested here in the relative positions between points, and those do
not change from camera to world coordinates, it suffices to use the representation in (4).

The literature on motion segmentation from 3D is rather limited mainly because ob-
taining 3D trajectories has not always been an easy task. An early example is the work
by [10], where they use the variance of the Euclidean distance between pairs of points as
the motion similarity (affinity) criterion. Once the authors have constructed a pairwise
affinity matrix for all the 3D points in the scene, they obtain the motion segmentation
solution by using spectral clustering [11]. More recently, in [12] the authors also use
the variance of the Euclidean distance, but instead they recover the final motion clusters
using a maximal cliques algorithm. In [13], similarly to [12], the authors build a graph
from the interest points in the 2D image. The edges of the graph are pruned using a
3D velocity similarity criterion and additional refinement techniques. In their work on
both monocular and stereoscopic vision for driving assistance systems [14], the authors
segment motions either by checking a number of geometric constraints (for the monoc-
ular case) or by calculating the velocity of 3D points (for the stereoscopic case). Both
cases are limited in that they require estimation of the camera’s ego-motion beforehand.
In [15] the authors obtain dense 3D trajectories from a Time-of-Flight (ToF) camera and
segment motions using 3D velocity and distance. Finally in [16] the authors present an
algorithm for segmenting motions in 3D SLAM applications, which employs various
motion grouping criteria based on pairwise distances. However, their method is only
presented for 2 frames at a time and extension to longer sequences is not so straight
forward due to the problem of label switching between two-frame windows.

As of late, new methods have appeared for object segmentation from motion and
depth, which use additional information beyond 3D geometry, such as image intensity.
For example the EM-style method by [17] that switches between segmentation and
motion estimation, or the semi-supervised object segmentation from RGB-D by [18] or
that by [19]. However related they might appear, these methods solve different, higher-
level problems (dense object segmentation vs sparse motion segmentation). In addition,
they are not generic solutions but are tied to specific sensors. For these reasons they are
not explored further in this paper.



4 V. Zografos et al.

Our method (see Fig. 1) is a novel approach, which works directly with 3D trajecto-
ries and uses the theory of transformation groups to define a set of invariants of points
located on the same rigid object at different frames. These invariants can be readily con-
verted into a set of robust motion affinities between the points. Because calculation of
the invariants is based primarily on QR factorizations of relatively small matrices and
can be applied to all points simultaneously, the method is also very fast. Coupled with
a localised sampling step and spectral clustering for recovering the final clusters, our
method provides a very accurate solution to the problem of 3D motion segmentation
from sparse 3D point trajectories. We have tested our approach on real and synthetic
sequences of 3D motions and compared against state-of-the-art methods. The results
show that our method outperforms all existing methods, especially in sequences that
exhibit strong perspective effects and degenerate configurations. Our key contributions
are:

– A fast and highly accurate algorithm for segmenting 3D trajectories,
– A framework for simultaneous calculation of group-theoretical motion invariants

on sets of 3D points,
– A multi-object dataset for evaluating sparse 3D motion segmentation algorithms,
– Comprehensive evaluation of state-of-the-art motion segmentation approaches on

real and synthetic data.

2 Background theory and method

Consider two 3D points located on different rigid objects, with the objects moving inde-
pendently in two frames (see Ex.1 in Fig. 2). The Euclidean distance between the points
is not invariant but changes over time. In other words, non-zero variance in the pairwise
distance suggests that the points lie on different moving objects. However, the oppo-
site is not always true. For example, the objects might have a relative motion that does
not change the distance between the points (see Ex.2 in Fig. 2). As such, non-varying
Euclidean distance is a necessary but not a sufficient condition for determining relative
motion between two points. Despite this inherent weakness, the Euclidean distance in-
variant can be used for motion segmentation [10, 12], and given enough pairwise point
samples and image frames, the impact of these ambiguous configurations may be effec-
tively reduced. However, since the number of frames is finite, there is a limitation as to
how much we can moderate the effects of ambiguities by using more images.

Our hypothesis is that we can use more invariants, say of N points, to make motion
segmentation even more robust to ambiguous and degenerate configurations. Take for
example N=4 points that define a tetrahedron in 3D space. There are 6 geometric in-
variants that uniquely determine a rigid tetrahedron. One such choice is the 6 pairwise
lengths of the tetrahedron. Thus if we sample 4 points, we should have 6 different val-
ues that we could test for invariance. Even though still not sufficient, this plurality of
invariants reduces considerably the likelihood of obtaining a tetrahedron that maintains
all its geometric properties unchanged under non-rigid motion. The problem with cal-
culating the geometric invariants from the example above at every frame, is that it can
quickly become a very expensive task, especially given a large number of points and
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Fig. 2. Example 1 showing that the 3D distance between two points changes if the points lie on
different moving objects. Example 2 showing that under certain configurations the distance might
stay the same yet the two points lie on different moving objects.

long frame sequences. In addition, if we want to use more than 4 points at a time, the
number of invariants as well as their associated computational costs increase consider-
ably. For example, the pairwise lengths between N points form an over-complete set
of dependent invariants that grows quadratically with increasing N . For this reason, we
have used the elements of group theory to define a framework for motion segmentation
using invariants, that is general: extending to any numberN≥2 of points; simple: defin-
ing geometric invariants in a straightforward way; and fast: where the invariants can be
calculated by factorizations of small matrices.

2.1 Group theoretical invariants

The use of group invariants is a well studied subject in computer vision (cf. the overview
article [20]), with particular focus on shape matching and object recognition. There are
many ways to construct such invariants, for example the approach described by [21] us-
ing Lie theory and PDEs, or the method by [22]. While we follow along the same lines,
in this paper we apply the theory of group invariants to the mostly unexplored problem
of 3D motion segmentation. We use the fact that transformation groups split the space
on which they operate into equivalence classes and for each such equivalence class we
select one unique representative. The parameters of this representative element are by
definition invariant under the group action. This approach for extracting the invariants
is simpler than [21, 23] and only involves QR factorizations.

The main idea that we will exploit here, is that in general we may recover a canon-
ical representation of a collection of N 3D points by some unique alignment with the
coordinate axes, so that the effects of the rigid transformation (i.e. from the motion of
the points) can be removed. In that canonical representation, the N points can be com-
pared along the frames without the temporal effects of their motion. If the points come
from the same rigid object then their canonical coordinates should be near-identical (in-
variant) over all frames F (see Fig. 1 left). If the points do not come from the same rigid
object, then there would be other influences outside the rigid transformation group that
will not be removed by the alignment procedure and will show up as variation in their
canonical coordinates and thus changes in the invariants (see Fig. 1 right).

G-invariant: We define the 3D coordinates of a point as the vector x, a collection
of N such vectors as the 3×N matrix X and the set of all matrices as X . Next we
introduce the special Euclidean transformation group SE(3) as the set of all element
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pairs g=(R, t), where R is a 3D rotation matrix and t is a 3D translation vector. We
can operate on matrices X by transforming all points simultaneously as g ·X, and define
the orbit of an element X under the group SE(3) as the set

OSE(3)
X := {g ·X | g ∈ SE(3)} . (5)

A G-invariant may be defined as the function F : X → R, which has constant values
αX on the orbit OSE(3)

X . This is written as

F(g ·X) := αX for all g ∈ SE(3). (6)

We may generate a complete set of independent G-invariants by starting from an ar-
bitrary but fixed element X on an orbit, and then constructing a unique element gX ∈
SE(3) such that gX·X=Xo. We call Xo the canonical element on the orbit with gXo=[I,0]
being the identity element in SE(3), 0 the zero vector and I the identity matrix.

The construction1 of the unique element is carried out by the following steps:

1. Given X, select t=−x1, where x1 is the first column in X, and subtract it from all other
columns in the matrix:

(I,−x1)X = [0, X̂], (7)

where X̂ are the translated last three columns of X.
2. Using the QR factorization, X̂ is decomposed as X̂=RV, where R is a rotation matrix (by
enforcing a determinant of 1) and

V = (v1,v2,v3) =

a b d
0 c e
0 0 f

 (8)

is a 3×3 upper triangular matrix.
3. Finally define the second part of the transformation by (RT , 0) and obtain:

g ·X = (RT ,0) (I,−x1)X

= (RT ,0)[0, X̂] = [0,V].
(9)

Due to the uniqueness of the translation and the QR factorization it follows that
g[0,V]=[I,0]. Each column in [0,V] now contains the canonical coordinates of the
transformed points from X. This process is shown in Fig. 3. A geometrical interpre-
tation of the above is that the first three columns of X represent the corners of a base
triangle. The ordering of the columns is arbitrary and we may eliminate the effects of
permutations by a fixed ordering of the columns in X according to falling norms and
some basic rule to break ties. Geometrically, this means we choose the point nearest to
the origin of the original coordinate system as the starting corner of the base triangle.
Then we sort out the remaining three points such that the lengths of the corresponding
sides of the triangle are increasing.

Following the above construction, we have many choices for defining G-invariant
functions F . In particular, we wish to detect large variations in V, over the F frames
in the sequence. Large variations in the elements of V will most likely indicate that

1 For ease of exposition, we will consider here that N=4, but the following construct is similar
for any N≥2.
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Fig. 3. Calculation of the canonical representation of a set of points. First the points are translated
to the origin using the first vertex of a chosen base triangle (shaded), and then a combined rotation
is recovered that aligns the base triangle with the axes.

the original 4 points in X do not come from the same rigid object. We could of course
look at the variance of the 6 nonzero elements in V from (8) and calculate 6 invariants.
However since the 3 columns v1,v2,v3 of V represent the canonical coordinates of
the last three 3D points in X (the canonical coordinates of the first point are always 0
by construction in (9)), a geometrically inspired and more robust set of G-invariants are
the median centered `2-norms of the columns of V:

Fn(g ·X) =
1

F

∑
f

∥∥vfn − µn∥∥2 , (10)

with n=1, ..., 3, f=1, ..., F , vfn the nth column of V at frame f , and µn being the
marginal median of vn over the frames. In the absence of noise, (10) will be zero for all
the points that lie on the same object. Furthermore due to the geometric nature of the
`2-norm, the 3 resulting scalar G-invariants from (10), will behave in a more predictable
way in the presence of noise than the individual elements of V. This is the reason why
it is preferable to consider functions of the 6 elements and obtain only 3 robust G-
invariants, rather than use the 6 elements directly and obtain 6 non-robust G-invariants.
It should be noted that by constructing the robust G-invariants via (10), we no longer
obtain a complete set of invariants, but rather the robust G-invariants now span a 3-
dimensional subspace in R6. From the robust invariants in (10) we may construct a
motion affinity measure (explained in the next section) and form the basis of our motion
segmentation algorithm.

3 The motion segmentation algorithm

Our motion segmentation algorithm follows the typical pipeline which involves con-
structing a pairwise motion affinity matrix for all the points in the scene, and then
using spectral clustering [11] for recovering the motion clusters. The construction of
the affinity matrix is preceded by an efficient local sampling step, designed to exploit
the property of “common fate” in proximal data, and thereby improve the segmentation
results. Once again, for ease of understanding we present the algorithm for N=4 points,
but the algorithm has a similar extension to any N>2.

3.1 The motion affinity

In the previous section we have presented the construction of the G-invariants for N=4
number of points (i.e. a 4-tuple). In order to utilize these invariants for motion segmen-
tation, we need to apply them to all the 3D points in the scene and extract a motion
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relationship between them. In other words, given a 3F×P data matrix W of P 3D
points in F frames, what we want is to use the G-invariants for obtaining a P×P pair-
wise motion affinity matrix between all the 3D points. The pairwise affinity matrix can
be used as input to a clustering algorithm (e.g. [11]) and obtain the final clusters.

Since (10) represents a direct relationship between a 4-tuple we may only say some-
thing about 4 points at a time and not about only 2 points (pairwise). Consider the set
S1 of all possible 4-tuples of P points. Sampling all the elements of S1 and deriving
a relationship between pairs of points would be practically infeasible. Instead, we can
use the technique by [24], which allows us to sample a small number C from the set
S2 of 3-tuples, with C�|S2|<|S1|, and create the P×C 4-way affinity matrix E. The
pairwise affinity matrix may be then approximated as A ≈ EET . The 4-way affinity
matrix E may be calculated, one column ec at a time, by first sampling a 3-tuple and
then calculating the 4-way affinity between that and every other scene point in turn. The
4-way affinity is defined as:

ec(p) = exp (−dc(p)/σc) , c = 1, . . . , C, (11)

where from (10) we have

dc(p) = Fn(g ·Xp,c), p = 1, . . . , P, (12)

with Xp,c=[W(f, S2(c)),W(f, p)] being the 4 points. σc is a kernel parameter defined
as the ρth percentile of each column ec. This way of choosing σc allows for both local
scaling of the kernel in each column and a kernel parameter which adapts to the range
of the data.

Completing one column of E requires P -3 evaluations of (10) (and thus QR factor-
izations) for the calculation of the G-invariants. However, we may reduce the compu-
tations considerably by exploiting the incremental construction of the G-invariants and
noting that for each of the P -3 evaluations, the initially sampled 3-tuple W(f, S2(c))
remains fixed. We may therefore pre-calculate the first two columns v1,v2 of V in (9)
from the fixed 3-tuple, using the exact same steps described in Section 2.1. The last col-
umn v3 of V may be obtained simultaneously for all the 3D scene points W(f, :) by
a matrix multiplication with the rotation matrix RT estimated from the QR factoriza-
tion of the 3-tuple. This incremental construction allows us to go from C×(P−3) QR
factorizations per frame required to construct E, to C QR factorizations and C matrix
multiplications per frame, which is considerably faster.

3.2 Local sampling

Since we are only sampling a small number C of 3-tuples for approximating the pair-
wise affinity matrix A, it is important to increase the probability that each 3-tuple comes
from the same rigid object. Otherwise, there will be a large variance in the canonical
coordinates of the points due to non-rigid motion and the 4-way affinity in (11) will
always be low, irrespective of the 4th point used. In [24] the authors proposed randomly
sampling the 3-tuples. However, this requires a large number C of samples to ensure
that enough columns of E contain points from the same object. An iterative technique
was suggested by [25], which involves random sampling, obtaining an initial motion



Fast segmentation of 3D point trajectories using group theoretical invariants 9

segmentation solution and then repeating the process by sampling from the identified
motion clusters. We propose a better sampling scheme, which exploits the locality prop-
erty in the data. That is, points on the same object generally lie in close proximity to
other points from the same object. Local sampling has a much higher likelihood of ob-
taining 3-tuples that are rigid and as a result can produce good results with far fewer
number of samples. To acquire C local 3-tuples points we start by randomly sampling
C points. For each point, we then sample the 2-nearest neighbours in 3D Euclidean
distance. The advantage of the local sampling technique can be seen in Fig. 4 and the
complete motion segmentation method is formulated in Algorithm 1.

Algorithm 1: Motion Segmentation algorithm

1 Input: data matrix W, # of samples C, # of motions m ; Output: motion labels Y
2 Local sampling of C number of 3-tuples from S2

3 for sample c = 1 : C do
4 for frame f = 1 : F do
5 Let X = W(f, S2(c)) and t = X(:, 1)

6 Translate as X̂ = X− t and W1 = W(f, :)− t

7 QR factorize X̂ = RV

8 Transform ALL points W2(f, :) = RTW1

9 Calculate dc(p) = 1
F

∑
f

∥∥W2(f, p)− µp

∥∥
2

from (12)
10 Calculate E column as ec(p) = exp (−dc(p)/σc) from (11)
11 Y = spectral clustering on A = EET with m clusters

3.3 Generalization to anyN≥2

The construction of the G-invariants and Algorithm 1 have been described for N=4
points, but have similar constructions for any number N≥2 points. For N=3 points
the construction is identical, leading to a unique QR factorization, 2 unique robust G-
invariants from (10), and the formation of a 3-way affinity matrix E from (11). For
N>4, we first calculate the G-invariants for 4 arbitrary but fixed points as in Sec. 2.1 and
then compute the canonical coordinates of the remaining points based on the estimated
QR factorization. We obtain 3∗(N -2) nonzero elements in V from (8), resulting inN−1
robust G-invariants that grow linearly with N . For the special case of N=2, the QR
factorization is no longer unique but the resulting G-invariants still are. Furthermore,
V is now a column vector and (10) leads to a single G-invariant. This G-invariant is
a robust form of the Euclidean distance variance between the two points. This is very
closely related to the motion affinity used by [10, 12] and in fact both published methods
can be considered as a special case of our framework for N=2. Finally when N=2,
Algorithm 1 simplifies to a direct calculation of the pairwise affinity matrix A without
the need for local sampling.
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Fig. 4. Effect of different sampling schemes on the segmentation error of the real dataset from
Sec. 4, as a function of the number C of N -tuples sampled.

Fig. 5. Samples from our captured real dataset with superimposed tracked feature points on mul-
tiple moving objects.

4 Experiments

We present the results from our experiments on real and synthetic data. We have com-
pared our method against compatible state-of-the-art approaches from literature that use
sparse point trajectories only, and where computer code was available. Specifically, the
2D motion segmentation methods SC [6], SSC [3], DiSC [7], LSR [5] and LRR [4] and
the 3D method by [10, 12] denoted here as Euc3D. Furthermore, all 2D methods were
extended by scaling with the depth measurements (depth scaling approach WP from
(3)), and are denoted here as SCP , SSCP , DiSCP , LSRP and LRRP respectively. All
competing methods were tuned either as suggested by their corresponding authors or
to the best of our ability. Our method’s parameters were set to: N=10, C=2P where P
is the number of points in the scene, and ρ=15 as the percentile of σc from (11). All
algorithms were given the number of motions m, and their parameters were kept fixed
across all experiments.

Unfortunately there is no publicly available 3D trajectory dataset with multiple mo-
tions. To our knowledge there are two dynamic RGB-D datasets in literature, both re-
quiring extraction of 3D trajectories, but none of which were suitable for our tests. The
first [26], contains very few sequences where only two articulated objects are moving
and over a very limited range. The second [27], consists of multiple objects moving
in front of a static camera, but due to the heavy motion blur and limited presence of
the objects in the scene, it has not been possible to extract any useful trajectories. We
have therefore captured our own 3D dataset and have used it to evaluate the different
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methods. This new dataset contains 460 sequences of 10 frames each, with 2-5 moving
objects and with on average 390 tracked points per sequence. The sequences have been
captured with a Kinect sensor, and 3D trajectories were extracted using the simple ap-
proach from (4). We have pre-processed the data in the following ways: first we have
used the cross-checking scheme by [28] to only retain complete trajectories and reject
those with gross tracking errors. Second, we have discarded any points with missing
or ambiguous depth measurements. Such points are usually located on depth discon-
tinuity boundaries, and are therefore easily identified by means of an edge detector in
the depth image. Note that despite this preprocessing, the dataset still contains many
challenging 3D trajectories due to the considerable amount of noise, particularly in the
depth measurements. Labelled examples from the dataset are illustrated in Fig. 5.

The results from running all methods on the 3D dataset are summarised in terms of
the segmentation error in Table 1, for the different types of motions. As expected all
methods start with a low error for 2 motions (with the exception of LRR and Euc3D)
and deteriorate at different rates as the number of motions (and hence the 3D trajec-
tories) increase. We see that only our method has remained consistently accurate with
a low error, and obtains the overall best result for the complete set of 460 sequences.
Second best is DiSC but at a much higher computational cost. Unsurprisingly, the other
competing 3D method (Euc3D) shows quite poor results, which is evidence that a sin-
gle invariant between two points is not robust enough, and one has to consider multiple
invariants. Regarding the depth scaled versions of the 2D methods, they are systemati-
cally much worse than when using the 2D trajectories alone. This is expected and can be
attributed to two factors: the considerable amount of noise in the depth measurements,
and the multiplicative effect of the tracking and depth noise already explained in Sec. 1.
The performance of each algorithm is further illustrated in the histograms in Fig. 6. It is
evident that our method together with DiSC and SSC have very similar performance in
terms of the cumulative segmentation errors that they obtain, with most sequences from
the dataset in the range of 0-10%, and with very few sequences in the range 20-50%.
This is not the case for methods such as LRR, LSR and Euc3D, since they segment
considerably more sequences with a high error in the range 20-50%.

In terms of speed (last column of Table 1), LSR is the fastest method, albeit rather
inaccurate, with Euc3D following closely with around 20 msec more computational
time on average. Our method is the third fastest at 0.34 sec but achieves more than
double the accuracy of Euc3D and LSR. Notice that the next two most accurate meth-
ods (DiSC and SSC) are 40-400 times slower by comparison. In summary, only our
approach is both fast and accurate enough to provide a viable solution to the motion
segmentation problem, while being largely unaffected by the additional depth error in
the 3D trajectories.

We have also performed an extra set of experiments on synthetic 3D trajectories
in order to further evaluate the performance of each algorithm against: different types
of motions, increasing number of objects, increasing noise and decreasing trajectory
length. Each test was executed 100 times with randomized placement and motion of
the objects. Fig. 7 (upper left) shows the segmentation results for general 3D motions,
motions with strong perspective distortions and degenerate motions (i.e. all points lo-
cated on 3D planes undergoing rotations and translations parallel to the image plane).
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We see that for general 3D motions, all methods perform equally well. However, for
perspective and degenerate motions, the majority of algorithms fail, particularly the 2D
methods that assume an affine camera model. Only our method and DiSC are able to
deal with the challenging projective and degenerate motions. In Fig. 7 (upper right), we
see the segmentation error vs an increasing number of objects. Our method is largely
unaffected by the number of objects, something which is also reflected in Table 1. DiSC
is the only other method that has similar accuracy in this experiment. In Fig. 7 (lower
left), we show segmentation error vs trajectory length, that is, motions becoming in-
creasingly smaller with each experiment. Smaller motions should be more difficult to
disambiguate. We observe that our method is once again the most accurate, and not
really degrading much by the decreasing trajectories. Fig. 7 (lower right) shows seg-
mentation error vs noise, scaled independently in both 2D and depth. Notice how LRR
breaks down due to its sensitive numerical nature. Our method is not the most robust but
shows good very good performance in relation to the majority of competitors. Although
geometric in nature, our method has the random element in choosing the N point sam-
ples and their ordering in the F frames. We believe that we may further improve the
robustness to noise by incorporating an explicit error model, which can describe the
joint perturbations of 3D points, in order to select more stable base triangles for the
canonical representation.

Lastly, we examine the performance of our method against different parameter set-
tings. All the experiments have been run on the real dataset, where each parameter was
changed in turn while the rest of the parameters were kept fixed. There are three param-
eters that are used in our algorithm: the N -tuple sample size parameter C, the size N
of the N -tuple, and the percentile parameter ρ for the kernel size σc. We see that the
performance of the method is very stable and with low error (i.e. wide valleys) across
a large region of the parameter space. This illustrates that our method can perform well
without the need for extensive tuning.

Fig. 6. Segmentation error histograms showing the detailed performance of each algorithm on the
real dataset.
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Fig. 7. Results from the synthetic dataset of segmentation error vs different types of motions
(upper left), increasing number of objects (upper right), decreasing trajectory length (lower left)
and increasing noise (lower right). Our method is displayed in bold.

Fig. 8. Average segmentation error % versus different parameter values (solid line). Each test was
executed 10 different times and the standard deviation is shown in the shaded regions. The chosen
parameters for the main tests in Table 1 are indicated by the circles.
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2 motions 3 motions 4 motions 5 motions Total Time
15 seq. 215 seq. 220 seq. 10 seq. 460 seq.

Method Average segmentation error
SC [6] 0.04% 6.21% 8.42% 8.52% 7.12% 0.64 sec
SCP 0.89% 15.62% 16.73% 22.11% 15.81% — ” —
SSC [3] 0.27% 5.38% 5.01% 27.51% 5.52% 113.10 sec
SSCP 0.61% 7.99% 8.19% 36.33% 8.47% — ” —
DiSC [7] 0.13% 6.66% 2.55% 8.08% 4.51% 9.53 sec
DiSCP 1.03% 24.81% 28.36% 17.57% 25.57% — ” —
LSR [5] 0.25% 7.21% 8.1% 18.5% 7.66% 0.09 sec
LSRP 14.63% 32.30% 36.22% 28.08% 33.51% — ” —
LRR [4] 2.92% 7.57% 10.17% 18.77% 8.91% 0.58 sec
LRRP 21.96% 49.56% 61.18% 61.55% 54.48% — ” —
Euc3D [10, 12] 1.20% 7.29% 9.51% 16.04% 8.34% 0.28 sec
Our 0.01% 5.59% 2.49% 4.98% 3.92% 0.34 sec

Table 1. Results from the real dataset. Each column shows the mean segmentation error of each
method over the sequences, while the last column shows the execution speed of each algorithm
(all tests ran on the same computer). The stochastic methods (DiSC, LSR, LRR, Our) have been
executed 100 times and their averaged results are displayed here.

5 Conclusion

We have presented a novel method for segmenting different motions from sparse 3D
trajectories. Our approach uses the theory of transformation groups to derive a set of
invariants of points located on the same rigid object. Because we exploit the particular
structure of the problem, these invariants can be quickly calculated using a QR factor-
ization and readily converted to a set of robust motion affinities for clustering motion
trajectories together. We have evaluated our motion segmentation method using syn-
thetic data and a new, real dataset that we have captured specifically for this work. In
our comparisons against state-of-the-art motion segmentation methods, we have found
that our method is more accurate than the competitors, while also being very fast. We
expect that our method will perform even better if a more advanced 3D trajectory ex-
traction algorithm is used, like [8, 9], that does not induce so much noise in the resulting
3D coordinates. In light of these results it is our conclusion that our original hypotheses
that i) motion segmentation in 3D is more accurate than in 2D, as well as that ii) ad-
ditional invariants lead to more robust motion segmentation, hold. The combined good
performance, fast execution speed, and stability under increasing data complexity, es-
tablish our method as a very attractive and viable solution to the problem of motion
segmentation of sparse 3D trajectories.
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